Neurobiology of Disease Modular Propagation of Epileptiform Activity: Evidence for an Inhibitory Veto in Neocortex

نویسندگان

  • Andrew J. Trevelyan
  • David Sussillo
  • Brendon O. Watson
  • Rafael Yuste
چکیده

What regulates the spread of activity through cortical circuits? We present here data indicating a pivotal role for a vetoing inhibition restraining modules of pyramidal neurons. We combined fast calcium imaging of network activity with whole-cell recordings to examine epileptiform propagation in mouse neocortical slices. Epileptiform activity was induced by washing Mg 2 ions out of the slice. Pyramidal cells receive barrages of inhibitory inputs in advance of the epileptiform wave. The inhibitory barrages are effectively nullified at low doses of picrotoxin (2.5–5 M). When present, however, these inhibitory barrages occlude an intense excitatory synaptic drive that would normally exceed action potential threshold by approximately a factor of 10. Despite this level of excitation, the inhibitory barrages suppress firing, thereby limiting further neuronal recruitment to the ictal event. Pyramidal neurons are recruited to the epileptiform event once the inhibitory restraint fails and are recruited in spatially clustered populations (150 –250 m diameter). The recruitment of the cells within a given module is virtually simultaneous, and thus epileptiform events progress in intermittent (0.5–1 Hz) steps across the cortical network. We propose that the interneurons that supply the vetoing inhibition define these modular circuit territories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular propagation of epileptiform activity: evidence for an inhibitory veto in neocortex.

What regulates the spread of activity through cortical circuits? We present here data indicating a pivotal role for a vetoing inhibition restraining modules of pyramidal neurons. We combined fast calcium imaging of network activity with whole-cell recordings to examine epileptiform propagation in mouse neocortical slices. Epileptiform activity was induced by washing Mg2+ ions out of the slice. ...

متن کامل

2-Arachidonoylglycerol enrichment Reduced Epileptiform Activity of the Rat Hippocampus induced with Pentylenetetrazol

Background and Objective: 2-arachidonoylglycerol (2-AG) and anandamide (AEA) are two major endocannabinoids. Using inhibitors of the enzymatic pathways involved in the elimination of 2-AG and AEA as well as synthetic 2-AG, we examined the effectiveness of these endocannabinoids on epileptiform activity induced in Wistar rats by pentylenetetrazol (PTZ). Material and Methods: Adult male Wistar r...

متن کامل

Electrophysiological characteristics of hippocampal CA1 neurons after spreading depression-triggered epileptic activity in brain slices

Introduction: A close link between spreading depression (SD) and several neurological diseases such as epilepsy could be demonstrated in many experimental studies. Epilepsy is among the most common brain disorders. Despite a large number of investigations, its mechanisms have not been yet well elucidated. Hippocampus is one of the important structures involved in seizures. The aim of this st...

متن کامل

Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms.

Waves of epileptiform activity in neocortex have three phenomenological stages: initiation, propagation, and termination. We use a well studied model of epileptiform activity in vitro to investigate directly the hypothesis that each stage is governed by an independent mechanism within the underlying cortical circuit. Using the partially disinhibited neocortical slice preparation, activity is in...

متن کامل

Optogenetic inhibition of chemically induced hypersynchronized bursting in mice.

Synchronized activity is common during various physiological operations but can culminate in seizures and consequently in epilepsy in pathological hyperexcitable conditions in the brain. Many types of seizures are not possible to control and impose significant disability for patients with epilepsy. Such intractable epilepsy cases are often associated with degeneration of inhibitory interneurons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006